Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gui-Ling Zhang, Yan-Tuan Li,* Zhi-Yong Wu and Yu-Lan Song

Marine Drug and Food Institute, Ocean University of China, 266003 Qingdao, People's
Republic of China
Correspondence e-mail: yantuanli@ouc.edu.cn

Key indicators

Single-crystal X-ray study
$T=571 \mathrm{~K}$
Mean $\sigma(\mathrm{l}-\mathrm{O})=0.006 \AA$
R factor $=0.075$
$w R$ factor $=0.200$
Data-to-parameter ratio $=11.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Sodium perchlorate in the space group Pnma

The first example of $\mathrm{Na}^{+} \mathrm{ClO}_{4}^{-}$in the orthorhombic system in space group Pnma at room temperature is reported. The Na, Cl and two O atoms are located on positions of site symmetry m.

Comment

It has been reported that LiClO_{4} (Henderson \& Brooks, 2003), $\mathrm{KClO}_{4}, \mathrm{RbClO}_{4}$ and CsClO_{4} (Bats \& Fuess, 1982; Granzin, 1988) crystallize in the same orthorhombic space group Pnma at room temperature, while interestingly NaClO_{4} has Cmcm (Liu, et al., 2002; Wartchow \& Berthold, 1978) or Bbmm orthorhombic symmetry (Zachariasen, 1930) and $F \overline{4} 3 m$ cubic symmetry (Herrmann \& Ilge, 1930). It has a cubic NaCl structure with space group Fm3m at high temperature (Berthold et al., 1979 and Berthold, et al., 1983). To the best of our knowledge, no structure of sodium perchlorate in space group Pnma has been reported. We obtained it, by chance, from a solution of cucurbit[5]uril and present the structure here.

The asymmetric unit of the title compound consists of one Na , one Cl and three O atoms. $\mathrm{Na} 1, \mathrm{Cl} 1, \mathrm{O} 2$ and O 3 are located on positions of site symmetry m. Figs. 1 and 2 show the

Figure 1
Na^{+}cation coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $x, \frac{1}{2}-y, z$; (ii) $x, \frac{3}{2}-y, z$; (iii) $x-\frac{1}{2}$, $y, \frac{1}{2}-z ;$ (iv) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}-z ;$ (v) $1-x, y+\frac{1}{2}, 1-z$; (vi) $1-x, 1-y, 1-z$; (vii) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (viii) $1-x, 1-y,-z$.]

Received 26 April 2006 Accepted 15 June 2006
coordination of the Na^{+}cations and ClO_{4}^{-}anions, respectively. Each Na^{+}cation is coordinated by seven different ClO_{4}^{-}anions with $\mathrm{Na}-\mathrm{O}$ distances of 2.977 (7)-3.093 (7) \AA (Table 1).

Experimental

Although the initial intention of our work was to prepare a polynuclear complex of cucurbit[5]uril with rare earth ions, sodium ions were added to enhance the solubility of cucurbit[5]uril. During the synthetic process crystals of sodium perchlorate were obtained as follows. To a $0.2 M$ sodium chloride aqueous solution (10 ml), cucurbit[5]uril $(0.166 \mathrm{~g})$ and a methanol (5 ml) solution of $\mathrm{Y}\left(\mathrm{ClO}_{4}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.198 \mathrm{~g})$ were added in turn with continuous stirring for 4 h at 373 K . The solution was filtered to remove a small amount of an insoluble material, and left to evaporate slowly at room temperature Colorless single crystals were obtained after a month.

Crystal data

$\mathrm{Na}^{+} \mathrm{ClO}_{4}{ }^{-}$
$M_{r}=122.44$
Orthorhombic, Pnma
$a=9.236$ (7) \AA
$b=5.809$ (4) \AA
$c=7.444$ (6) \AA
$V=399.4(5) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=2.036 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

$\mu=0.93 \mathrm{~mm}^{-1}$
$T=571$ (2) K
Block, colorless
$0.28 \times 0.23 \times 0.19 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.782, T_{\text {max }}=0.844$
1882 measured reflections 387 independent reflections 342 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1006 P)^{2}\right. \\
& \quad+2.6942 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.92 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Figure 2
$\mathrm{ClO}_{4}{ }^{-}$anion coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (viii) $1-x, 1-y,-z$; (ix) $\frac{1}{2}+x, y$, $\frac{1}{2}-z ;(x) \frac{1}{2}-x, 1-y, z-\frac{1}{2}$.]

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (No. 20471056).

References

Bats, J. W. \& Fuess, H. (1982). Acta Cryst. B38, 2116-2120.
Berthold, H. J., Baethge, H. G., Hoelscher, B. G., Kienert, H. J., Ludwig, W., Molepo, J. M. \& Wartchow, R. (1983). Ber. Bunsen-Ges. Phys. Chem. 87, 245-248.
Berthold, H. J., Kruska, B. G. \& Wartchow, R. (1979). Z. Naturforsch. Teil B, 34, 522-523.
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Granzin, J. (1988). Z. Kristallogr. 184, 157-162.
Henderson, W. A. \& Brooks, N. R. (2003). Inorg. Chem. 42, 4522-4524.
Herrmann, K. \& Ilge, W. (1930). Z. Kristallogr. 75, 41-66.
Liu, J., Duan, C.-G., Mei, W. N., Smith, R. W. \& Hardy, J. R. (2002). J. Solid State Chem. 163, 294-299.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wartchow, R. \& Berthold, H. J. (1978). Z. Kristallogr. 147, 307-411.
Zachariasen, W. H. (1930). Z. Kristallogr. 73, 141-146.

[^0]: © 2006 International Union of Crystallography All rights reserved

